
1

V&V WITHIN REUSE-BASED SOFTWARE ENGINEERING
Reuse ‘96 Working Group

Edward A. Addy, Chair
30 July - 1 August 1996

Introduction

Verification and Validation (V&V) is used
to increase the level of assurance of critical
software, particularly that of safety-critical
and mission-critical software.  V&V is a
systems engineering discipline that evaluates
the software in a systems context, and is
currently applied during the development of
a specific application system.  In order to
bring the effectiveness of V&V to bear
within reuse-based software engineering,
V&V must be incorporated within the
domain engineering process.

Participants in the working group developed
an initial framework for performing V&V
within reuse-based software engineering.
This framework identified V&V tasks that
could be performed in domain engineering,
V&V tasks that could be performed in the
transition from domain engineering to
application engineering, and the impact of
these tasks on application V&V activities.
The group also considered the criteria and
motivation for performing V&V in domain
engineering.

The participants in the V&V Within Reuse-
Based Software Engineering working group
were:
• Edward Addy, NASA/WVU Software

Research Laboratory (Chair)
• Susan Robinett , SRA / Army Reuse

Center
• Michael Sabolish, MountainNet, Inc. /

Research Intern
• Patrick Theeke, SAIC / ASSET

• Frances Van Scoy, WVU Department of
Statistics and Computer Science

Verification and Validation in Traditional
System Application Engineering

V&V is a set of activities performed in
parallel with system development and
designed to provide assurance that a
software system meets the operational needs
of the user.  It ensures that the requirements
for the system are correct, complete, and
consistent, and that the life-cycle products
correctly implement the system
requirements.

The term verification refers to the process of
determining whether or not the products of a
given phase of the software development
cycle fulfill the requirements established
during the previous phase, while validation
is the process of evaluating software at the
end of the software development  process to
ensure compliance with software
requirements [IEEE STD 729].  Verification
is intended to ensure that the product is built
correctly, while validation assures that the
correct product is built.

While verification and validation have
separate definitions, in practice the activities
are merged into the process of V&V.  This
process evaluates software in a systems
context, using a structured approach to
analyze and test the software against system
functions and against hardware, user and
other software interfaces [Wallace and
Fujii].



V&V Within Reuse-Based Software Engineering Reuse ‘96 Working Group

2

A set of V&V activities is defined in the
IEEE Standard for Software Verification and
Validation Plans [IEEE STD 1012].  These
activities are divided into the life-cycle
phases listed below.  The V&V tasks within
each life-cycle phase are shown in Figure 1.

• Management of V&V
• Concept Phase V&V
• Requirements Phase V&V
• Design Phase V&V
• Implementation Phase V&V
• Test Phase V&V
• Installation and Checkout Phase

V&V
• Operations and Maintenance

Phase V&V

V&V is typically performed as a part of a
risk mitigation strategy for application
systems having high risk.  The risks can be
in areas such as safety, security, mission,
financial, or reputation.  The scope and level
of V&V can vary with each project, based
on the criticality of the system and on the
role of software in accomplishing critical
functions of the system.

Premise Examined by the Working
Group

A principle of software development that is
addressed by V&V is that problems that are
found later in the life-cycle become more
difficult and more expensive to correct.
This is the reason that V&V activities begin
in the concept phase and continue
throughout all phases.

In order to extend the benefit of early error
detection to reuse-based software
engineering, V&V must be incorporated
within the domain engineering process.  To
this end, the working group focused its
efforts by examining the following premise:

In a domain containing high-
risk systems, some V&V
activities can be performed
during domain engineering in
order to avoid the repetition
of these activities in multiple
application systems.

The model for reuse-based software
engineering used by the group was the
STARS Two Life-Cycle Model, shown in
Figure 2.  This model assumes a domain-
specific, architecture-centered approach to
software reuse.  The domain model
describes the problem space of the domain,
and expresses requirements.  The domain
architecture describes the solution space of
the domain, while the domain components
are intended to be used within application
systems to meet the functions described in
the domain architecture.

The working group created a model for
V&V within reuse-based software
engineering by adding V&V activities to the
STARS Two Life-Cycle Model.  The
application-level IV&V tasks described in
IEEE STD 1012 served as a starting point.
Similar tasks that the group considered
appropriate were added to link life-cycle
phases in the domain level, and transition
asks were added to link application phases
with domain phases.  The group also
considered how the new domain-level and
transition-level tasks would impact the
scope and level of the old application-level
tasks.  The resultant model is shown in
Figure 3, and the specific tasks of each
phase at the domain and transition levels are
listed in Figure 4.

Domain-level V&V tasks are performed to
ensure that domain products fulfill the
requirements established during earlier
phases of domain engineering.  Transition-



3

Figure 1: V&V Tasks for Life-Cycle Phases in Application Engineering

PHASE TASKS
Management Software Verification and Validation Plan Generation

Baseline Change Assessment
Management Review
Review Support

Concept Concept Documentation Review
Requirements Software Requirements Traceability Analysis

Software Requirements Evaluation
Software Requirements Interface Analysis
System Test Plan Generation
Acceptance Test Plan Generation

Design Design Traceability Analysis
Design Evaluation
Design Interface Analysis
Component Test Plan Generation
Integration Test Plan Generation
Test Design Generation

• component testing
• integration testing
• system testing
• acceptance testing

Implementation Source Code Traceability Analysis
Source Code Evaluation
Source Code Interface Analysis
Source Code Documentation Evaluation
Test Case Generation

• component testing
• integration testing
• system testing
• acceptance testing

Test Procedure Generation
• component testing
• integration testing
• system testing

Component Test Execution
Test Test Procedure Generation

• acceptance testing
Integration Test Execution
System Test Execution
Acceptance Test Execution

Installation and
Checkout

Installation Configuration Audit
V&V Final Report Generation

Operations and
Maintenance

Software V&V Plan Revision
Anomaly Evaluation
Proposed Change Assessment
Phase Task Iteration



V&V Within Reuse-Based Software Engineering Reuse ‘96 Working Group

4

Domain
Analysis

Domain
Design

Domain
Implementation

Requirements
Analysis

System
Design

System
Implementation

Domain Engineering

Application Engineering

Existing
System

Artifacts

New System
Requirements

Domain
Model

Domain
Architecture

Domain
Components

New
System

Domain Management

Figure 2: STARS Two Life-Cycle Model

System
Specification

Domain
Analysis

Domain
Design

Domain
Implementation

Requirements
Analysis

System
Design

System
Implementation

Domain Engineering

Application Engineering

New and
Existing System

Artifacts and
Requirements

(Domain
Concepts)

System
Requirements
(Common and 

Unique)

Domain
Model

Domain
Architecture

Domain
Components

New
System

Domain Management

System
Architecture

Program Management

Verification

Development

Validation

Correspondence

Figure 3: Framework for V&V within Reuse-Based Software Engineering



V&V Within Reuse-Based Software Engineering Reuse ‘96 Working Group

5

Figure 4: V&V Tasks for Life-Cycle Phases at the Domain and Transition Levels

level tasks provide assurance that an
application artifact  correctly implements the
corresponding domain artifact.  Traditional
application-level V&V tasks ensure the
application products fulfill the requirements
established during previous application life-
cycle phases.

Integration test activities were explicitly
omitted from the domain-level tasking, since
they were viewed as oriented toward
application-specific testing.  Some form of
integration testing might be appropriate
within domain-level V&V in the case where

the architecture calls for specific domain
components to be integrated in multiple
systems.  This limited form of integration
testing could be covered within the
component testing activities.

Correspondence analysis is a term not found
in IEEE STD 1012, that the working group
used to describe the activities to provide
assurance that an application artifact is a
correct implementation of the domain
artifact.  The group identified four activities
to be performed during correspondence
analysis:

LEVEL PHASE TASKS
Domain
Engineering

Domain
Analysis

Validate Domain Model
Model Evaluation
Requirements Traceability Analysis (especially
forward traceability for completeness)

Domain Design Verify Domain Architecture
Design Traceability Analysis
Design Evaluation
Design Interface Analysis
Component Test Plan Generation
Component Test Design Generation

Domain
Implementation

Verify and Validate Domain Components
Component Traceability Analysis
Component Evaluation
Component Interface Analysis
Component Documentation Evaluation
Component Test Case Generation
Component Test Procedure Generation
Component Test Execution

Transition Requirements Correspondence Analysis between System
Specification and Domain Model

Design Correspondence Analysis between System
Architecture and Domain Architecture

Implementation Correspondence Analysis between System
Implementation and Domain Components



V&V Within Reuse-Based Software Engineering Reuse ‘96 Working Group

6

• Map the application artifact to the
corresponding domain artifact.

• Ensure that the application artifact
has not been modified from the
domain artifact without proper
documentation.

• Ensure that the application artifact is
a correct instantiation of the domain
artifact.

• Obtain information on testing and
analysis on a domain artifact to aid in
V&V planning for the application
artifact.

The group did not identify any application-
level V&V tasks that could be eliminated
due to tasks being performed at the domain
or transition levels.  It might be possible to
reduce the level of effort for some
application-level tasks.  The reduction in
effort might occur in a case where the
application artifact is used in an unmodifed
form from the domain component, or where
the application artifact is an instantiation of
the domain component through parameter
resolution or through generation.

Domain maintenance and evolution should
be handled in a manner similar to that
described in the operations and maintenance
phase of application-level V&V.  Changes
proposed to domain artifacts should be
assessed by V&V to determine the impact of
the proposed correction or enhancement.  If
the assessment determines that the change
will impact a critical area or function within
the domain, appropriate V&V activities
should be repeated to assure the correct
implementation of the change.

The working group considered the
importance of  communicating V&V work
products and results, and concluded that this
communication was vital in order to avoid
the repetition of V&V tasks and to ensure

that potential reusers could properly assess
the status of reusable components.  V&V
work products and results should be
associated with the component and made
available to domain and application
engineers.  In some cases, the V&V might
be directed at a grouping of components
rather than at an individual component, and
this information should also be available.
The information that should be
communicated should include the following:

• V&V Planning Decisions and
Rationale

• V&V Analysis Activities
• V&V Test Cases and Procedures
• V&V Results and Findings

Findings of the Working Group

The working group made three primary
findings in regard to performing V&V
within reuse-based software engineering.
The findings are listed and discussed below.

1. There are motivating reasons to perform
V&V during domain engineering.

V&V activities might be appropriately
performed during domain engineering.  The
primary motivation for V&V within domain
engineering is to find and correct errors in
the domain artifact in order to prevent the
errors from being propagated to the
application systems.  This motivation is
especially strong where the application
systems perform critical functions.  Even if
there are no critical functions performed by
the systems within the domain, V&V might
be appropriate for a component that has the
potential to be used in a large number of
application systems.  The motivation
contained within the original premise
considered by the working group was that of



V&V Within Reuse-Based Software Engineering Reuse ‘96 Working Group

7

reducing redundant V&V activities within
multiple critical applications.  This
motivation seemed to have some merit, but
appeared to be weaker than the other two
reasons because of conditions described in
the second finding.  The reasons for
performing V&V during domain engineering
are listed below:

• To reduce operational risk by
providing assurance that domain
artifacts are correct and consistent
with user needs

• To reduce the risk of a fault in a
component used in many systems

• To reduce redundant V&V efforts in
separate applications

2. V&V within Domain Engineering is
appropriate for some domains.

V&V tasks during domain engineering will
be of benefit when performed in a well-
defined domain that contains multiple
systems with high risk.  The context in
which the components will be used should
be well understood, to provide a proper
framework for analysis and testing of the
component.  The ability to perform V&V
will increase as the application artifacts
more closely match the domain components
(e.g., unmodified reuse, application artifacts
created through parameterization).  The
V&V effort should be tailored to address the
critical areas within the domain, with the
level of effort being greatest in the areas of
highest criticality.

3. V&V is not appropriate in reuse outside
of architecture-centered domain
engineering.

Without the context of the domain, it is
impossible to perform V&V activities on a
component.  This is consistent with the
concept that V&V should consider software

in relation to the system in which the
software is executing.  It is not possible to
determine criticality or to consider the
impact of fault or error conditions in
isolation of context, and it is the domain
architecture that provides the context for the
systems in the domain.

Since general purpose reuse libraries do not
typically retain the context for which the
component can be reused, V&V would not
generally be an appropriate activity for these
libraries.  This should not be understood as
an argument against ensuring that domain
artifacts are of a high quality and perform as
described.  V&V is performed within
application development as a complement
and not a replacement of QA and testing.
QA and testing are always appropriate reuse
activities, even when V&V is not  possible.

Conclusion

The working group was successful in
identifying V&V tasks that could be
performed in the domain engineering and
transition levels of reuse-based software
engineering.  The primary motivation for
V&V at the domain level is to provide
assurance that the domain requirements are
correct and that the domain artifacts
correctly implement the domain
requirements.  A secondary motivation is the
possible elimination of redundant V&V
activities at the application level.  Domain-
level V&V activities should be considered
within a domain-specific, architecture-
centered domain that contains multiple
critical systems.

Future work that needs to be performed to
continue development of the framework for
performing V&V within reuse-based
software engineering includes determining
criteria for identifying domains where V&V



V&V Within Reuse-Based Software Engineering Reuse ‘96 Working Group

8

is appropriate; specifying prerequisites,
inputs and outputs for the domain-level and
transition-level V&V tasks;  and developing
methods and tools to perform the domain
engineering V&V tasks.  Refinement of the
framework will occur when experiments are
conducted in applying V&V within critical
domains.

References

Cited References

IEEE STD 729, IEEE Standard Glossary of
Software Engineering, IEEE Computer
Society, 1983.

IEEE STD 1012, IEEE Standard for
Software Verification and Validation Plans,
IEEE Computer Society, 1986.

Wallace, Dolores R. and Fujii, Roger U.,
Software Verification and Validation: Its
Role in Computer Assurance and Its
Relationship with Software Project
Management Standards, NIST Special
Publication 500-165, National Institute of
Standards and Technology, 1989.

Other References used by the Working
Group

Dunham, Janet R., V&V in the Next
Decade, IEEE Software, May 1989.

Lewis, Robert O., Independent Verification
and Validation, A Life Cycle Engineering
Process for Quality Software, John Wiley &
Sons, 1992.

Wallace, Dolores R. and Fujii, Roger U.,
Software Verification and Validation: An
Overview, IEEE Software, May 1989.


